Peroxiredoxin I contributes to TRAIL resistance through suppression of redox-sensitive caspase activation in human hepatoma cells.

نویسندگان

  • In-Sung Song
  • Sun-Uk Kim
  • Nang-Su Oh
  • Jiyoung Kim
  • Dae-Yeul Yu
  • Song Mei Huang
  • Jin-Man Kim
  • Dong-Seok Lee
  • Nam-Soon Kim
چکیده

Reactive oxygen species (ROS) have been implicated in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance of many cancers. We evaluated the role of peroxiredoxin (Prx) I in TRAIL resistance governed by coupling of nicotinamide adenosine dinucleotide phosphate oxidase (Nox)-derived ROS signaling with the p38 mitogen-activated protein kinase (MAPK)/caspase-signaling cascade in liver cancer cells. Upregulated Prx I expression was found in neoplastic regions of human patient liver, and Prx I knockdown resulted in accelerated TRAIL-induced cell death in SK-Hep-1 human hepatoma cells. The TRAIL cytotoxicity by Prx I knockdown was dependent on activation of caspase-8/3 cascades, which was ablated by addition of inhibitors for p38 MAPK, ROS or Nox, suggesting the association with Nox-driven redox signaling. Furthermore, we found that Nox4 was constitutively expressed in both SK-Hep-1 cells and tumor regions of patient livers, knockdown of Nox4 expression could alleviate ROS generation and TRAIL-mediated cytotoxicity. In accordance with previous findings, increased activation of both p38 MAPK and caspase cascades by Prx I knockdown was inhibited by either Nox4 knockdown or SB203580 addition. Collectively, these data suggest that Prx I functions to block propagation of Nox-derived ROS signaling to the p38 MAPK/caspase/cell death cascade during TRAIL treatment and also provides a molecular mechanism by which Prx I contributes to TRAIL resistance in liver cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Expression of TRAIL and Its Receptors on Peripheral T-Cells in Type 1 Diabetic Patients

Background: Type-I diabetes is an autoimmune inflammatory disease in which pancreatic ß-cells are selectively destroyed by infiltrating cells. TNF-related apoptosis-inducing ligand (TRAIL) is a type-II membrane protein of the TNF superfamily which is expressed in different tissues, including pancreas and lymphocytes. In humans, TRAIL interacts with four membrane receptors. TRAIL-R1 and TRAIL-R2...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis.

Oncogenic c-Myc renders cells sensitive to TRAIL-induced apoptosis, and existing data suggest that c-Myc sensitizes cells to apoptosis by promoting activation of the mitochondrial apoptosis pathway. However, the molecular mechanisms linking the mitochondrial effects of c-Myc to the c-Myc-dependent sensitization to TRAIL have remained unresolved. Here, we show that TRAIL induces a weak activatio...

متن کامل

Targeting Bcl-xL in esophageal squamous cancer to sensitize to chemotherapy plus TRAIL-induced apoptosis while normal epithelial cells are protected by blockade of caspase 9

TRAIL induces apoptotic cell death upon binding to either of two proapoptotic TRAIL receptors, TRAIL R1 (DR4) or TRAIL R2 (KILLER/DR5). Activation of the proapoptotic death receptors by TRAIL engagement induces the formation of a death-inducing signaling complex (DISC), which consists of receptor, FADD, as an adaptor, and caspase 8 as an initiator caspase. Once the DISC is formed, the caspase 8...

متن کامل

Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3.

Little is known on how cancer cells can acquire resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In this study, we established TRAIL-resistant cells from the TRAIL-sensitive human ovarian carcinoma cell line OVCAR3 to evaluate the potential mechanisms of acquired resistance to TRAIL. The selected resistant cells were cross-resistant to Fas ligand but remained sensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2009